Allee effect in the selection for prime-numbered cycles in periodical cicadas.
نویسندگان
چکیده
Periodical cicadas are well known for their prime-numbered life cycles (17 and 13 years) and their mass periodical emergences. The origination and persistence of prime-numbered cycles are explained by the hybridization hypothesis on the basis of their lower likelihood of hybridization with other cycles. Recently, we showed by using an integer-based numerical model that prime-numbered cycles are indeed selected for among 10- to 20-year cycles. Here, we develop a real-number-based model to investigate the factors affecting the selection of prime-numbered cycles. We include an Allee effect in our model, such that a critical population size is set as an extinction threshold. We compare the real-number models with and without the Allee effect. The results show that in the presence of an Allee effect, prime-numbered life cycles are most likely to persist and to be selected under a wide range of extinction thresholds.
منابع مشابه
Evolution of periodicity in periodical cicadas
Periodical cicadas (Magicicada spp.) in the USA are famous for their unique prime-numbered life cycles of 13 and 17 years and their nearly perfectly synchronized mass emergences. Because almost all known species of cicada are non-periodical, periodicity is assumed to be a derived state. A leading hypothesis for the evolution of periodicity in Magicicada implicates the decline in average tempera...
متن کاملLife Cycle Replacement by Gene Introduction under an Allee Effect in Periodical Cicadas
Periodical cicadas (Magicicada spp.) in the USA are divided into three species groups (-decim, -cassini, -decula) of similar but distinct morphology and behavior. Each group contains at least one species with a 17-year life cycle and one with a 13-year cycle; each species is most closely related to one with the other cycle. One explanation for the apparent polyphyly of 13- and 17-year life cycl...
متن کاملPeriodical cicadas: a minimal automaton model
The Magicicada spp. life cycles with its prime periods and highly synchronized emergence have defied reasonable scientific explanation since its discovery. During the last decade several models and explanations for this phenomenon appeared in the literature along with a great deal of discussion. Despite this considerable effort, there is no final conclusion about this long standing biological p...
متن کاملAn Evolutionary Selection Model Based on a Biological Phenomenon: The Periodical Magicicadas
Magicicada is the genus of periodical cicadas which display a unique combination of long life cycles, periodicity, and mass emergences. Their nymphs live underground and stay immobile before constructing an exit tunnel in the spring of their 13th or 17th year, depending on the species. Once out, the adult insects live only for a few weeks with one sole purpose: reproduction. Both 13 and 17 are ...
متن کاملAgent Based Simulation in Biology: the Case of Periodical Insects as Natural Prime Numbers Generators
Magicicada is the genus of the 13 and 17 year periodical cicadas of eastern North America; these insects display a unique combination of long life cycles, periodicity, and mass emergences. Their nymphs live underground and stay immobile before constructing an exit tunnel in the spring of their 13th or 17th year, depending on the species. Once out, the adult insects live only for a few weeks wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 22 شماره
صفحات -
تاریخ انتشار 2009